
Transparent DIFC: Harnessing Innate

Application Event Logging for Fine-Grained

Decentralized Information Flow Control

1

7th IEEE European Symposium on Security and Privacy
June 9, 2022

Jason Liu, Anant Kandikuppa, Adam Bates

Data Breaches Are Alarmingly Common

2

"We have recently notified all affected
users of a security breach in Freepik
Company, affecting Freepik and
Flaticon. The security breach was due
to a SQL injection in Flaticon that
allowed an attacker to get some user’s
information from our database." [1]

Data of 8.3M users was stolen by
one attacker!

[1] FreePik, Aug. 2020. https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/

Flaticon icons created by Freepik - Flaticon

https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/
https://www.flaticon.com/free-icons/flaticon

Data Breaches Are Alarmingly Common

2

"We have recently notified all affected
users of a security breach in Freepik
Company, affecting Freepik and
Flaticon. The security breach was due
to a SQL injection in Flaticon that
allowed an attacker to get some user’s
information from our database." [1]

Data of 8.3M users was stolen by
one attacker!

[1] FreePik, Aug. 2020. https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/

Flaticon icons created by Freepik - Flaticon

POST /login

user:jason...

https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/
https://www.flaticon.com/free-icons/flaticon

Data Breaches Are Alarmingly Common

2

"We have recently notified all affected
users of a security breach in Freepik
Company, affecting Freepik and
Flaticon. The security breach was due
to a SQL injection in Flaticon that
allowed an attacker to get some user’s
information from our database." [1]

Data of 8.3M users was stolen by
one attacker!

[1] FreePik, Aug. 2020. https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/

Flaticon icons created by Freepik - Flaticon

POST /login

user:jason...

Login successful!

https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/
https://www.flaticon.com/free-icons/flaticon

Data Breaches Are Alarmingly Common

2

"We have recently notified all affected
users of a security breach in Freepik
Company, affecting Freepik and
Flaticon. The security breach was due
to a SQL injection in Flaticon that
allowed an attacker to get some user’s
information from our database." [1]

Data of 8.3M users was stolen by
one attacker!

[1] FreePik, Aug. 2020. https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/

Flaticon icons created by Freepik - Flaticon

POST /login

' UNION ...

https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/
https://www.flaticon.com/free-icons/flaticon

Data Breaches Are Alarmingly Common

2

"We have recently notified all affected
users of a security breach in Freepik
Company, affecting Freepik and
Flaticon. The security breach was due
to a SQL injection in Flaticon that
allowed an attacker to get some user’s
information from our database." [1]

Data of 8.3M users was stolen by
one attacker!

[1] FreePik, Aug. 2020. https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/

Flaticon icons created by Freepik - Flaticon

POST /login

' UNION ...

user=jason pass=... 
user=anant pass=...

user=adam pass=...

...

https://www.freepikcompany.com/newsroom/statement-on-security-incident-at-freepik-company/
https://www.flaticon.com/free-icons/flaticon

What Went Wrong?

3

• Data confidentiality from MAC

• e.g., SELinux, AWS IAM

• allow flaticon_t flaticon_db_t:db_table
*;

• Traditional MAC cannot distinguish
application-level users or data!

flaticon_t

flaticon_db_t

What Went Wrong?

3

• Data confidentiality from MAC

• e.g., SELinux, AWS IAM

• allow flaticon_t flaticon_db_t:db_table
*;

• Traditional MAC cannot distinguish
application-level users or data!

POST /login

' UNION ...

flaticon_t

flaticon_db_t

What Went Wrong?

3

• Data confidentiality from MAC

• e.g., SELinux, AWS IAM

• allow flaticon_t flaticon_db_t:db_table
*;

• Traditional MAC cannot distinguish
application-level users or data!

POST /login

' UNION ...

user=jason pass=... 
user=anant pass=...

user=adam pass=...

...

flaticon_t

flaticon_db_t

What Went Wrong?

3

• Data confidentiality from MAC

• e.g., SELinux, AWS IAM

• allow flaticon_t flaticon_db_t:db_table
*;

• Traditional MAC cannot distinguish
application-level users or data!

POST /login

' UNION ...

user=jason pass=... 
user=anant pass=...

user=adam pass=...

...

flaticon_t

flaticon_db_t

Actually, this problem was already
solved in 1997...

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

POST /login

user:jason...

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

POST /login

user:jason...

Login successful!

{jason}

✓

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

POST /login

' UNION ...

{jason}

✓

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

POST /login

' UNION ...

user=jason pass=... 
user=anant pass=...

user=adam pass=...

...

{jason}{jason,anant,adam,...}

✓✗

DIFC: Application-Level Security

4

• Decentralized Information Flow
Control (DIFC): applications can
define flow control rules

• Finer-grained labeling of application-
level users and data

POST /login

' UNION ...

user=jason pass=... 
user=anant pass=...

user=adam pass=...

...

{jason}{jason,anant,adam,...}

✓✗

Why does DIFC remain unused
despite its advantages?

DIFC Requirements

5

• Modify code to:

• Label threads and data

• Specify allowable flows

• Declassify data safely

DIFC Requirements

5

• Modify code to:

• Label threads and data

• Specify allowable flows

• Declassify data safely
{jason}{jason,anant,adam,...}

DIFC Requirements

5

• Modify code to:

• Label threads and data

• Specify allowable flows

• Declassify data safely
{jason}{jason,anant,adam,...}

✓✗

DIFC Requirements

5

• Modify code to:

• Label threads and data

• Specify allowable flows

• Declassify data safely
{jason}{jason,anant,adam,...}

✓✗

Such code changes are too costly
to justify widespread deployment

Can we enforce DIFC
policies transparently?

6

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls Log

⋮

Userspace
Kernelspace

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls Log

⋮

Userspace
Kernelspace

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls Log

⋮

Userspace
Kernelspace

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls Log

⋮

Userspace
Kernelspace

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls Log

⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

p1 p2

Devs Have Already Done (Some of) the Work

7

• Best practices dictate logging 
key events

• Logs contain application-level
information

• Including threading!

• Applications convey this to the
reference monitor via write syscalls

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

From Devs to SysAdmins

8

• Only need to create policies for
programs when required

• Can specialize policies to exact
needs & deployments

• Easy to write policies spanning
multiple programs

{ }

p1 p2

T-DIFC Overview

9

Log
⋮

Userspace
Kernelspace

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

Log
⋮

Userspace
Kernelspace

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

Log
⋮

Userspace
Kernelspace

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

Log
⋮

Userspace
Kernelspace

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

Log
⋮

Userspace
Kernelspace

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

{v}

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

{u}{v}{v}

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

{u,v}?{v}

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

{u,v}✗{v}

p1 p2

T-DIFC Overview

9

{v}{u}

Log
⋮

Userspace
Kernelspace

p1: u logged in

p2: v logged in

⋮

Configure 
External Policy

Log 
Interception

Label
Propagation &
Permissions

{u,v} ✓

Labeling

10

match "<p[0-9]+>: <.+> logged in" {

 process <1> {

 settags tag(<2>);

 }

}

• Extract PID of current thread
(<p[0-9]+>)

• Extract user as tag (<.+>)

p1 p2

⋮

Log 

Interception

Labeling

10

match "<p[0-9]+>: <.+> logged in" {

 process <1> {

 settags tag(<2>);

 }

}

• Extract PID of current thread
(<p[0-9]+>)

• Extract user as tag (<.+>)

p1 p2

⋮

p1: u logged in

Log 
Interception

{u}

Labeling

10

match "<p[0-9]+>: <.+> logged in" {

 process <1> {

 settags tag(<2>);

 }

}

• Extract PID of current thread
(<p[0-9]+>)

• Extract user as tag (<.+>)

p1 p2

⋮

Log 

Interception

{u}

Labeling

10

match "<p[0-9]+>: <.+> logged in" {

 process <1> {

 settags tag(<2>);

 }

}

• Extract PID of current thread
(<p[0-9]+>)

• Extract user as tag (<.+>)

p1 p2

⋮

p1: u logged in 

⋮

Log 
Interception

{u}

Declassification

11

• Unlike existing systems, T-DIFC can only 
directly manipulate labeling state at 
specific code locations (logs)

• Allow specific implicit declassification
using an external policy rule

• Only declassify if label is small enough

• Prevents smash-'n-grab attacks

p1

Latest

log write

{Cannot directly 
modify label

Evaluation Takeaways

12

Category "Useful"
Policy? Sample Log

HTTP Servers 3/3 host - user ...
Other Servers 3/3 USER user: Login successful.

Load Balancing 0/1 Connect from addr:port to ...
Web Applications 2*/2 ... Login for user succeeded ...

Databases 3*/3 ... "get" "key"
Web Clients 3/4 Logging in as user... Logged in!

*Insufficient data partitioning

Surveyed Applications with Useful Policies

No
13%

Yes
56%

Partial
31%

ProFTPD case study:

~154% overhead per log write

Negligible data transfer overhead

Open Challenges

13

• Difficulty in creating correct policies for a specific program

• Translating high-level security policies to DIFC policies

• Handling implementation details, e.g., fork before/after logging?

• Finer-grained partitioning for complex data structures 
(e.g., monolithic file-based or in-memory databases)

• Effectiveness on varying workloads

Conclusion

14

• One factor limiting DIFC is lacking compatibility with existing software

• Application logs can be used to partition processes and generate tags

• We can express DIFC policies from most existing applications' logs

• We create T-DIFC, an OS-level DIFC system leveraging logs to achieve
transparent DIFC 
 

Thank you!
jdliu2@illinois.edu

Finer-Than-Process Granularity

15

• "Event process" abstraction from
Asbestos [1]

• Can divide many servers into
handlers for different user requests

• Each handler is typically one
iteration of an event-handling loop

[1] Efstathopoulos et al.. Labels and Events in the Asbestos Operating System. SOSP '05.

while (true) {

 e = wait_for_event();

 handle_event(e);

}

event for u

event for v

 ...

ProFTPD Example

16

id 21;

namespace unique;

logfile "/var/log/proftpd/proftpd.log";

max_process_label 1;

match ".*proftpd\[<[0-9]+>\].*:

 USER <[^:]+>: Login successful.\n" {

 process <1> {

 settags tag(<2>);

 }

}

ProFTPD Users

Files

Credential
SQL Database

u v

... USER v: Login successful.

... USER u: Login successful.

...

...

Log

vu

